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Overview
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Overview

• Objective: Create superior recognition framework

• Utilizing document info & image data

• Two post-processing methods

• Fully autonomous

• Semi-autonomous

• Trained on the Handwritten Chess Scoresheet (HCS) Dataset
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Motivation

• Chess is the most popular board game

• 605 million active players

• Tournament managers spend hours entering data manually

• Camera-based applications are convenient

• A specialized framework increases accuracy over a traditional Latin handwriting 

recognition network
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A Brief 
Explanation 
of Standard 
Algebraic 
Notation 
(SAN)
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Format

• 2 sheets per game

• One sheet from each perspective

• Official record for chess match

• Settle disputes

• Verify winners

• Written on paper
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Chess Notation
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Chess Notation
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The 
Handwriting 
Chess 
Scoresheet 
Dataset
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Image Capture

• Captured with phone camera

• Natural lighting

• Gathered from live tournaments

• Standard corner detection transformation
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Dataset 
Contents

• 158 games
• 215 individual pages
• 13,810 tagged handwriting 

samples
• Ground truths in single .txt file

http://tc11.cvc.uab.es/datasets/HCS_1/
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https://sites.google.com/view/chess-scoresheet-dataset/home/

http://tc11.cvc.uab.es/datasets/HCS_1/
https://sites.google.com/view/chess-scoresheet-dataset/home/


Sample Scoresheet Images
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Ground Truth 
Tagging

Training Set Ground 
Truths

Testing Set Ground 
Truths
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Offline Chess 
Scoresheet 

Recognition 
Framework
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Pre-Processing

• Otsu’s method of thresholding

• Long horizontal/vertical kernels

• Quadrilaterals selected by size 

and position
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Network 
Architecture
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Post-
Processing
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Post-
Processing

• Does not require user input
• Ideal for making predictions quickly

Fully Autonomous Method

• Requires user input
• Lower error rate
• For scenarios that require high precision

Semi-Autonomous Method
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Fully Autonomous

Are 
predictions 

equal?
Start

Return 
prediction

Is one 
prediction 

valid?

Return valid 
prediction

Return high 
confidence 
prediction

Yes Yes

No No
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Semi-
Autonomous
• Follows autonomous logic
• Confidence threshold = 90%
• Interrupts user in following cases:

• Strong conflict
• Weak conflict
• Weak match

• Interruption rate = 7%
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Training 
and Results
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Training
• Pretrained on IAM dataset

• 86,000 word samples
• 80 valid characters
• Max word length = 27 chars

• Finetuning
• 4,706 samples from 35 unique pages
• 47,060 with 10:1 data augmentation
• Epochs = 10
• Batch size = 32
• LR = 0.0005
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Recognition Accuracy
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Human Error Rate ≈ 2%



Conclusion
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Conclusion

Future Scopes

ü Incorporate game validation into post-processing
ü Increase prediction accuracy with most played moves
üExpand HCS dataset

üBalance rare data (long castles)
üCreate user friendly mobile application
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Thank You
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